8 research outputs found

    HOTSPOT REMEDIATION USING GERMANIUM SELF COOLING TECHNOLOGY

    Get PDF
    Localized thermoelectric "self cooling" in semiconductor materials is among the most promising approaches for the remediation of on-chip hot spots resulting from the shrinking feature sizes and faster switching speeds of nanoelectronic components. Self cooling in a germanium chip is investigated, using 3-dimensional, thermal-electric, coupled numerical simulations, for a range of systems and geometric parameters. The results suggest that localized cooling, associated with the introduction of an electric current on the back surface of a germanium chip, can effectively reduce the hot spot temperature rise on the active side of the chip. It was found that self cooling in a 100µm thick chip could provide between 3.9ºC and 4.5ºC hotspot temperature reduction. When using a germanium layer above an electrically insulated silicon layer, self-cooling was found to yield an additional 1ºC to 2º C temperature reduction. A streamlined computational tool is developed to facilitate the identification of optimal cooling parameters

    Surface diffusion of graphs: Variational formulation, error analysis, and simulation

    Get PDF
    Surface diffusion is a (fourth-order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for graphs and derive a priori error estimates for a time-continuous finite element discretization. We also introduce a semi-implicit time discretization and a Schur complement approach to solve the resulting fully discrete, linear systems. After computational verification of the orders of convergence for polynomial degrees 1 and 2, we show several simulations in one dimension and two dimensions with and without forcing which explore the smoothing effect of surface diffusion, as well as the onset of singularities in finite time, such as infinite slopes and cracks.Fil: Bänsch, Eberhard. Freie Universität Berlin; . Weierstrass Institute For Applied Analysis And Stochastics;Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unido

    An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition

    Get PDF
    We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.Fil: Bänsch, Eberhard. Freie Universität Berlin;Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unido

    Convergence of Adaptive Finite Element Methods

    Get PDF
    Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well.Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosFil: Siebert, Kunibert G.. Universität Heidelberg

    Preconditioning a class of fourth order problems by operator splitting

    No full text
    We develop preconditioners for systems arising from finite element discretizations of parabolic problems which are fourth order in space. We consider boundary conditions which yield a natural splitting of the discretized fourth order operator into two (discrete) linear second order elliptic operators, and exploit this property in designing the preconditioners. The underlying idea is that efficient methods and software to solve second order problems with optimal computational effort are widely available. We propose symmetric and non-symmetric preconditioners, along with theory and numerical experiments. They both document crucial properties of the preconditioners as well as their practical performance. It is important to note that we neither need Hs-regularity, s > 1, of the continuous problem nor quasi-uniform grids.Fil: Bänsch, Eberhard. Universitat Erlangen-Nuremberg; AlemaniaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unido

    Local problems on stars: A posteriori error estimators, convergence, and performance

    No full text
    A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosFil: Siebert, Kunibert G.. Universität Heidelberg

    AFEM for geometric PDE: The Laplace-Beltrami operator

    No full text
    We present several applications governed by geometric PDE, and their parametric finite element discretization, which might yield singular behavior. The success of such discretization hinges on an adequate variational formulation of the Laplace-Beltrami operator, which we describe in detail for polynomial degree 1. We next present a complete a posteriori error analysis which accounts for the usual PDE error as well as the geometric error induced by interpolation of the surface. This leads to an adaptive finite element method (AFEM) and its convergence. We discuss a contraction property of AFEM and show its quasi-optimal cardinality.Fil: Bonito, Andrea. Texas A&M University; Estados UnidosFil: Cascón, José Manuel. Universidad de Salamanca; EspañaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unido
    corecore